China high quality Timber Grab Slew Drive Reducer cvt gearbox

Product Description

 Timber grab slew drive reducer 

Model Slewing Drive SC14 Brand Coresun Drive
Holding Torque 48Kn.m Tilting Moment Torque 67.8Kn.m
Self-locking Yes Gear Ratio 85:1
Outer Dia. 390mm Inner Dia. 295mm
IP Class IP65 Precision ≤0.12°

Coresun Drive slew worm drive system is a compactly constructed unit which consists of a slewing ring, base plate and worm.
This unit brings the advantages of a slewing ring and a worm into 1 unit. It is suitable for applications which demand slow rotation with a continuous or cyclical movement capable of handling combined loads.
The product is with standard dimensions for coupling an electric or hydraulic motor as well as coupling a whole system to equipment. Due to its compactness, high rigidity and other mentioned advantages, a worm drive system is used in varying equipment such as mobile assembly platforms, satellite system, hydraulic loading cranes on haulage vehicles, small marine cranes, extendable rotating ladders, in wheel units of large marine portal transporters.

1. Rotation 360 degrees
2. Connection of a driving motor from the left or right side
3. During installation, it is not necessary to adjust the gearing clearance; this is already set by the producer before factory
4. Simple installation and low maintenance
5. Rational space utilization
6. The gear is self-locking; therefore a brake is not necessary
7. Easy and fluent method of starting and stopping

There are no special limitations of mounting angles and positions of this series of products.  It can be mounted horizontally, vertically and inclined.  Enclosed slewing drives are assembled of enclosed housing, slewing bearing, worm shaft and other parts.  Users can choose electric motors or hydraulic motors as the driving power.  It can slew 360 degrees clock-wise or otherwise.  The slewing drive is compact and it is also easy to mount and maintain in comparison with other types of driving devises.
It adopts enclosed design and the protection level can reach IP65.  It can effectively prevent dust, rain and other hostile environments.  It suits field usage such as desert, alpine and other hostile environments.
1.Products are easy to mount and maintain.
2.The design and mounting dimensions are international or domestic universal dimensions.  It is easy for the users’ replacements in the future.

Tilting Moment Torque: Torque is the load multiplied by distance between the position of load and the center of slewing bearing. If the qorque generated by load and distance is greater than the rated tilting moment torque, slewing drive will be overturned.

Radial load: Load vertical to the axis of slewing bearing

Axial load: Load parallel to the axis of slewing bearing

Holding torque:It is the reverse torque.When the drive is rotating reversely, and parts are not damaged,The maximum torque achieved is called holding torque.

Self-locking: Only when loaded, the slewing drive is not able to reverse rotate and thus called self-locking.

Coresun Drive Slewing Bearing Production Precision and Backlash Testing.Ensuring smooth operation.

Coresun Drive testing reports for WH products on measurement, material and finished production.


It is sincerely looking CHINAMFG to cooperating with you and providing the best quality product & service with all of our heart!

/* January 22, 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Holding Torque: 48kn.M
Tilting Moment Torque: 67.8kn.M
Static Axial Load: 920kn
Static Radial Laod: 343kn
Slewing Bearing: Worm Gear
Application: Man Lift Crane


Customized Request

gear gearbox

Can you provide real-world examples of products that use gear reducer technology?

Certainly! Gear reducer technology is widely used in various industries and products to enhance performance and efficiency. Here are some real-world examples:

1. Industrial Machinery: Gear reducers are commonly used in manufacturing machinery, such as conveyor systems, material handling equipment, and assembly lines, where they help control speed and torque for precise operations.

2. Wind Turbines: Wind turbines utilize gear reducers to transform the low rotational speed of the wind turbine rotor into the higher speed needed for electricity generation, optimizing energy conversion.

3. Automotive Transmissions: Automobiles use gear reducers as part of their transmissions to optimize power delivery from the engine to the wheels, allowing the vehicle to operate efficiently at different speeds.

4. Robotics: Robotic systems rely on gear reducers to control the movement and articulation of robot arms, enabling precise and controlled motion for various applications.

5. Printing Presses: Gear reducers are integral to printing presses, ensuring accurate and synchronized movement of printing plates, rollers, and paper feed mechanisms.

6. Conveyor Belts: Conveyor systems in industries like mining, agriculture, and logistics use gear reducers to regulate the movement of materials along the conveyor belts.

7. Packaging Machinery: Gear reducers play a crucial role in packaging machines, controlling the speed and movement of packaging materials, filling mechanisms, and sealing components.

8. Cranes and Hoists: Cranes and hoists rely on gear reducers to lift heavy loads with precision and control, ensuring safe and efficient material handling.

9. Pumps and Compressors: Gear reducers are utilized in pumps and compressors to regulate fluid flow and pressure, optimizing energy usage in fluid transportation systems.

10. Agriculture Equipment: Tractors and other agricultural machinery use gear reducers to adjust the speed and power delivery for different tasks, such as plowing, planting, and harvesting.

These examples demonstrate the diverse applications of gear reducer technology across various industries, showcasing their role in enhancing efficiency, control, and performance in a wide range of products and systems.

gear gearbox

Can gear reducers be used for both speed reduction and speed increase?

Yes, gear reducers can be utilized for both speed reduction and speed increase, depending on their design and arrangement. The functionality to either decrease or increase rotational speed is achieved by altering the arrangement of gears within the gearbox.

1. Speed Reduction: In speed reduction applications, a gear reducer is designed with gears of different sizes. The input shaft connects to a larger gear, while the output shaft is connected to a smaller gear. As the input shaft rotates, the larger gear turns the smaller gear, resulting in a decrease in output speed compared to the input speed. This configuration provides higher torque output at a lower speed, making it suitable for applications that require increased force or torque.

2. Speed Increase: For speed increase, the gear arrangement is reversed. The input shaft connects to a smaller gear, while the output shaft is connected to a larger gear. As the input shaft rotates, the smaller gear drives the larger gear, resulting in an increase in output speed compared to the input speed. However, the torque output is lower than that of speed reduction configurations.

By choosing the appropriate gear ratios and arrangement, gear reducers can be customized to meet specific speed and torque requirements for various industrial applications. It’s important to select the right type of gear reducer and configure it correctly to achieve the desired speed reduction or speed increase.

gear gearbox

How do gear reducers handle variations in input and output speeds?

Gear reducers are designed to handle variations in input and output speeds through the use of different gear ratios and configurations. They achieve this by utilizing intermeshing gears of varying sizes to transmit torque and control rotational speed.

The basic principle involves connecting two or more gears with different numbers of teeth. When a larger gear (driving gear) engages with a smaller gear (driven gear), the rotational speed of the driven gear decreases while the torque increases. This reduction in speed and increase in torque enable gear reducers to efficiently adapt to variations in input and output speeds.

The gear ratio is a critical factor in determining how much the speed and torque change. It is calculated by dividing the number of teeth on the driven gear by the number of teeth on the driving gear. A higher gear ratio results in a greater reduction in speed and a proportionate increase in torque.

Planetary gear reducers, a common type, use a combination of gears including sun gears, planet gears, and ring gears to achieve different speed reductions and torque enhancements. This design provides versatility in handling variations in speed and torque requirements.

In summary, gear reducers handle variations in input and output speeds by using specific gear ratios and gear arrangements that enable them to efficiently transmit power and control motion characteristics according to the application’s needs.

China high quality Timber Grab Slew Drive Reducer   cvt gearbox	China high quality Timber Grab Slew Drive Reducer   cvt gearbox
editor by CX 2024-04-26