Produktbeschreibung
High Efficiency Inline Planetary Gear Reducer
Produktbeschreibung
CHINAMFG planetary gear motor
Technical data:
1. Ratio range: 8.1-191
2. Input power: 0.12-270 KW
3. Permit torque rang: ≤ 50000 N. M
4. Output speed: 0.3~205 r/min
5. Structure: Foot-mounted, flange-mounted, shaft-mounted
| Input structure | motor,IEC flange |
| Output speed | motor,IEC flange,input shaft |
| solid shaft, hollow shaft with key,with shrink disk |
Characteristic:
1. Adopt optimized design, module combination, right angle output, space reduction
2. High strength and longevity gears
3. Can be combined with various motors, wider ratio range
4. Big output torque, smoothly startup, high efficiency
Production pictures:
/* 22. Januar 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Anwendung: | Motor, Maschinen |
|---|---|
| Funktion: | Distribution Power, Change Drive Torque, Speed Reduction |
| Layout: | Koaxial |
| Härte: | Gehärtete Zahnoberfläche |
| Installation: | Vertikaler Typ |
| Schritt: | Single-Step |
| Proben: |
US$ 200/Piece
1 Stück (Mindestbestellmenge) | |
|---|
| Anpassung: |
Verfügbar
| Kundenspezifische Anfrage |
|---|

How do manufacturers ensure the precision of gear tooth profiles in gear reducers?
Manufacturers employ several techniques to ensure the precision of gear tooth profiles in gear reducers, which is crucial for optimal performance and efficiency:
1. Precision Machining: Gear teeth are typically machined using advanced CNC (Computer Numerical Control) machines that can achieve high levels of accuracy and repeatability. This ensures consistent gear tooth profiles across multiple components.
2. Quality Control Measures: Rigorous quality control processes, such as dimensional inspections and profile measurements, are performed at various stages of manufacturing to verify that gear tooth profiles meet the required specifications.
3. Tooth Profile Design: Engineers use specialized software and simulation tools to design gear tooth profiles with precise involute shapes and accurate dimensions. These designs are then translated into machine instructions for manufacturing.
4. Material Selection: High-quality materials with excellent wear resistance and dimensional stability are chosen to minimize the potential for deformation or inaccuracies during machining and operation.
5. Heat Treatment: Heat treatment processes, such as carburizing and quenching, are applied to enhance the surface hardness and durability of gear teeth, reducing the risk of wear and deformation over time.
6. Tooth Grinding and Finishing: After initial machining, gear teeth often undergo precision grinding and finishing processes to achieve the desired tooth profile accuracy and surface finish.
7. Post-Processing Inspection: Gear tooth profiles are inspected again after manufacturing processes to verify that the final components meet the specified tolerances and performance criteria.
8. Computer-Aided Manufacturing (CAM): CAM software is used to generate tool paths and machining instructions, enabling precise control over tool movements and material removal during gear manufacturing.
By combining these techniques and leveraging advanced manufacturing technologies, manufacturers can achieve the necessary precision in gear tooth profiles, resulting in reliable and efficient gear reducers for various industrial applications.

What maintenance practices are essential for prolonging the lifespan of gear reducers?
Proper maintenance is crucial for extending the lifespan and ensuring optimal performance of gear reducers. Here are essential maintenance practices:
- 1. Lubrication: Regular lubrication of gear reducers is vital to reduce friction, wear, and heat generation. Use the recommended lubricant and follow the manufacturer’s guidelines for lubrication intervals.
- 2. Inspection: Routinely inspect gear reducers for signs of wear, damage, or leaks. Check for unusual noises, vibrations, or temperature increases during operation.
- 3. Alignment: Ensure proper alignment of the input and output shafts. Misalignment can lead to increased wear, noise, and reduced efficiency. Align the components according to the manufacturer’s specifications.
- 4. Cooling and Ventilation: Maintain proper cooling and ventilation to prevent overheating. Ensure that cooling fans and vents are clean and unobstructed.
- 5. Seal Maintenance: Inspect and replace seals as needed to prevent contaminants from entering the gear reducer. Contaminants can lead to accelerated wear and reduced performance.
- 6. Bolts and Fasteners: Regularly check and tighten bolts and fasteners to prevent loosening during operation, which can cause misalignment or component damage.
- 7. Replacing Worn Components: Replace worn or damaged components, such as gears, bearings, and seals, with genuine parts from the manufacturer.
- 8. Vibration Analysis: Conduct periodic vibration analysis to identify potential issues early. Excessive vibration can indicate misalignment or component wear.
- 9. Maintenance Records: Keep detailed maintenance records, including lubrication schedules, inspection dates, and component replacements. This helps track the history of the gear reducer and aids in future maintenance planning.
- 10. Training: Provide proper training to maintenance personnel on gear reducer maintenance and troubleshooting techniques.
By adhering to these maintenance practices, you can maximize the lifespan of your gear reducers, minimize downtime, and ensure reliable operation in your industrial processes.

Gibt es bei den Getriebeuntersetzungsgetrieben Varianten für spezifische Aufgaben und Anwendungen?
Ja, Getriebe gibt es in vielen verschiedenen Ausführungen, um spezifischen Aufgaben und Anwendungen in unterschiedlichen Branchen gerecht zu werden. Hersteller bieten eine Reihe von Getriebetypen und -konfigurationen an, um verschiedenen Anforderungen gerecht zu werden, darunter:
- Stirnradgetriebe: Diese vielseitigen Bauteile gewährleisten eine gleichmäßige und effiziente Drehmomentübertragung. Sie werden häufig in Anwendungen eingesetzt, die hohe Präzision und moderate Drehzahlreduzierung erfordern, wie beispielsweise Förderbänder, Mischer und Rührwerke.
- Kegelradgetriebe: Sie eignen sich ideal zur Kraftübertragung zwischen sich kreuzenden Wellen. Sie werden häufig in schweren Maschinen, Druckmaschinen und Automobilanwendungen eingesetzt.
- Schneckengetriebe: Diese bieten kompakte Lösungen und eignen sich für Anwendungen mit höheren Anforderungen an die Geschwindigkeitsreduzierung, wie z. B. Förderanlagen, Winden und Aufzüge.
- Planetengetriebe: Diese bieten eine hohe Drehmomentdichte und werden in Anwendungen eingesetzt, die eine präzise Steuerung erfordern, wie z. B. Robotik, Luft- und Raumfahrt sowie Schwermaschinenbau.
- Parallelwellen-Getriebe: Diese in Industriemaschinen häufig verwendeten Getriebe sind auf hohes Drehmoment und Zuverlässigkeit ausgelegt.
- rechtwinklige Untersetzungsgetriebe: Sie kommen zum Einsatz, wenn aufgrund von Platzmangel eine Änderung der Wellenrichtung erforderlich ist, wie es häufig bei Verpackungsmaschinen und Förderbändern der Fall ist.
Jeder Getriebetyp besitzt einzigartige Merkmale und Vorteile, die ihn für bestimmte Aufgaben geeignet machen. Hersteller bieten häufig Anpassungsmöglichkeiten an, um Getriebe exakt an die Anforderungen einer Anwendung anzupassen, darunter Übersetzungsverhältnisse, Montageoptionen und Eingangs-/Ausgangskonfigurationen.
Die Vielfalt der Getriebekonstruktionen ermöglicht es der Industrie daher, den am besten geeigneten Typ anhand von Faktoren wie Drehmoment, Drehzahl, Platzverhältnissen, Präzision und Umgebungsbedingungen auszuwählen.


editor by CX 2024-04-29