Produktbeschreibung
Produktparameter
Features of S series reducer
The same model can be equipped with motors of various powers. It is easy to realize the combination and connection between various models.
The transmission efficiency is high, and the single reducer efficiency is up to 96%. three
The transmission ratio is subdivided and the range is wide. The combined model can form a large transmission ratio and low output speed.
The installation forms are various, and can be installed with any foot, B5 flange or B4 flange. The foot mounting reducer has 2 machined foot mounting planes.
Helical gear and worm gear combination, compact structure, large reduction ratio.
Installation mode: foot installation, hollow shaft installation, flange installation, torque arm installation, small flange installation.
Input mode: motor direct connection, motor belt connection or input shaft, connection flange input.
Average efficiency: reduction ratio 7.5-69.39 is 77%; 70.43-288 is 62%; The S/R combination is 57%.
Detailed Photos
/* 22. Januar 2571 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Härte: | Gehärtete Zahnoberfläche |
|---|---|
| Installation: | 90 Degree |
| Layout: | Expansion |
| Zahnradform: | Bevel Gear |
| Schritt: | Single-Step |
| Typ: | Getriebeuntersetzung |
| Proben: |
US$ 150/Piece
1 Stück (Mindestbestellmenge) | |
|---|

Können Sie Beispiele aus der Praxis für Produkte nennen, die Getriebeuntersetzungstechnologie nutzen?
Absolut! Getriebetechnik findet in verschiedenen Branchen und Produkten breite Anwendung, um Leistung und Effizienz zu steigern. Hier einige Beispiele aus der Praxis:
1. Industriemaschinen: Getriebeuntersetzungsgetriebe werden häufig in Fertigungsmaschinen eingesetzt, beispielsweise in Förderanlagen, Materialhandhabungsgeräten und Montagelinien, wo sie zur Steuerung von Drehzahl und Drehmoment für präzise Arbeitsgänge beitragen.
2. Windkraftanlagen: Windkraftanlagen nutzen Getriebeuntersetzungsgetriebe, um die niedrige Drehzahl des Windkraftanlagenrotors in die für die Stromerzeugung benötigte höhere Drehzahl umzuwandeln und so die Energieumwandlung zu optimieren.
3. Kfz-Getriebe: Automobile nutzen Getriebeuntersetzungsgetriebe als Teil ihres Antriebsstrangs, um die Kraftübertragung vom Motor auf die Räder zu optimieren und so einen effizienten Betrieb des Fahrzeugs bei unterschiedlichen Geschwindigkeiten zu ermöglichen.
4. Robotik: Robotersysteme nutzen Getriebe zur Steuerung der Bewegung und Gelenkigkeit von Roboterarmen und ermöglichen so präzise und kontrollierte Bewegungen für verschiedene Anwendungen.
5. Druckpressen: Getriebeuntersetzungsgetriebe sind ein wesentlicher Bestandteil von Druckmaschinen und gewährleisten die präzise und synchronisierte Bewegung von Druckplatten, Walzen und Papierzuführungsmechanismen.
6. Förderbänder: In Branchen wie dem Bergbau, der Landwirtschaft und der Logistik werden Fördersysteme mit Getrieben betrieben, um die Bewegung von Materialien entlang der Förderbänder zu regulieren.
7. Verpackungsmaschinen: Getriebeuntersetzungsgetriebe spielen eine entscheidende Rolle in Verpackungsmaschinen, indem sie die Geschwindigkeit und Bewegung von Verpackungsmaterialien, Abfüllmechanismen und Versiegelungskomponenten steuern.
8. Kräne und Hebezeuge: Krane und Hebezeuge sind auf Getriebe angewiesen, um schwere Lasten präzise und kontrolliert heben zu können und so einen sicheren und effizienten Materialtransport zu gewährleisten.
9. Pumpen und Kompressoren: Getriebe werden in Pumpen und Kompressoren eingesetzt, um den Flüssigkeitsstrom und den Druck zu regulieren und so den Energieverbrauch in Flüssigkeitstransportsystemen zu optimieren.
10. Landwirtschaftliche Geräte: Traktoren und andere landwirtschaftliche Maschinen verwenden Getriebeuntersetzungsgetriebe, um die Geschwindigkeit und die Kraftübertragung für verschiedene Aufgaben wie Pflügen, Säen und Ernten anzupassen.
Diese Beispiele veranschaulichen die vielfältigen Einsatzmöglichkeiten der Getriebetechnik in verschiedenen Branchen und zeigen deren Rolle bei der Steigerung von Effizienz, Kontrolle und Leistung in einer breiten Palette von Produkten und Systemen.

Can gear reducers be used for both speed reduction and speed increase?
Yes, gear reducers can be utilized for both speed reduction and speed increase, depending on their design and arrangement. The functionality to either decrease or increase rotational speed is achieved by altering the arrangement of gears within the gearbox.
1. Speed Reduction: In speed reduction applications, a gear reducer is designed with gears of different sizes. The input shaft connects to a larger gear, while the output shaft is connected to a smaller gear. As the input shaft rotates, the larger gear turns the smaller gear, resulting in a decrease in output speed compared to the input speed. This configuration provides higher torque output at a lower speed, making it suitable for applications that require increased force or torque.
2. Speed Increase: For speed increase, the gear arrangement is reversed. The input shaft connects to a smaller gear, while the output shaft is connected to a larger gear. As the input shaft rotates, the smaller gear drives the larger gear, resulting in an increase in output speed compared to the input speed. However, the torque output is lower than that of speed reduction configurations.
By choosing the appropriate gear ratios and arrangement, gear reducers can be customized to meet specific speed and torque requirements for various industrial applications. It’s important to select the right type of gear reducer and configure it correctly to achieve the desired speed reduction or speed increase.

How do gear reducers handle variations in input and output speeds?
Gear reducers are designed to handle variations in input and output speeds through the use of different gear ratios and configurations. They achieve this by utilizing intermeshing gears of varying sizes to transmit torque and control rotational speed.
The basic principle involves connecting two or more gears with different numbers of teeth. When a larger gear (driving gear) engages with a smaller gear (driven gear), the rotational speed of the driven gear decreases while the torque increases. This reduction in speed and increase in torque enable gear reducers to efficiently adapt to variations in input and output speeds.
The gear ratio is a critical factor in determining how much the speed and torque change. It is calculated by dividing the number of teeth on the driven gear by the number of teeth on the driving gear. A higher gear ratio results in a greater reduction in speed and a proportionate increase in torque.
Planetary gear reducers, a common type, use a combination of gears including sun gears, planet gears, and ring gears to achieve different speed reductions and torque enhancements. This design provides versatility in handling variations in speed and torque requirements.
In summary, gear reducers handle variations in input and output speeds by using specific gear ratios and gear arrangements that enable them to efficiently transmit power and control motion characteristics according to the application’s needs.


editor by CX 2024-04-08