Deskripsi Produk
Deskripsi Produk
| Rasio : | 3:1—10000:1 | Reaksi balik: | hingga 3 menit busur |
| Keluaran : | hingga 6000N.m | Bingkai : | AB/ABR042-285 |
Output : Poros Keluaran Gigi Miring
Dukungan ganda bantalan bola alur dalam
Fitur inti AB
Fitur struktural
Rangka planet keluaran reduksi mengadopsi mur terpadu guna menghilangkan desain jarak bebas aksial, bantalan rol tirus depan dan belakang mendistribusikan rentang besar dan seluruh kotak, membentuk struktur super terintegrasi, guna memastikan peningkatan kekakuan torsional serta memiliki daya dukung radial dan daya dukung aksial yang super kuat, menggunakan proses pemrosesan untuk menyelesaikannya, guna memastikan koaksialitas yang sangat tinggi.
Cincin roda gigi peredam mengadopsi desain struktur integral.
Cincin roda gigi reduksi, rangka planet, poros input terbuat dari baja struktural 40Cr berkualitas tinggi, proses penempaan panas, sehingga memperoleh kepadatan material yang lebih tinggi, daripada penggunaan kotak pengecoran, baja bulat, dengan kekuatan, kekakuan, ketangguhan yang lebih tinggi.
Karakteristik roda gigi
Roda gigi heliks dengan permukaan gigi yang sangat keras, material roda giginya adalah baja paduan berkualitas tinggi 20CrMnTi. Setelah proses karburasi dan penggilingan, kekerasannya mencapai HRC62. Dibandingkan dengan baja biasa 40Cr dan 38CrMnTi, roda gigi ini memiliki kekerasan, kekakuan, ketangguhan, dan ketahanan aus yang lebih tinggi. Teknologi desain dan analisis 3DSimulation diadopsi untuk memodifikasi bentuk gigi, arah gigi, dan mengikuti pemangkasan, masing-masing untuk mengurangi kebisingan akibat penyambungan roda gigi dan meningkatkan masa pakai rangkaian roda gigi.
Karakteristik aplikasi
Susunan bantalan rol tirus bentang panjang menghasilkan arsitektur planet integral, sehingga produk ini memiliki daya dukung radial yang kuat dan daya dukung aksial yang sangat baik, serta kekakuan yang tinggi. Aplikasi presisi tinggi, serta frekuensi start-stop dan perubahan beban yang tinggi sangat baik.
Petunjuk Instalasi
Peredam planet presisi – tentang pemasangan
/* October 22, 2571 15:47:17 */(()=>{function d(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1

Konsep Susunan Poros Koaksial dan Paralel pada Gearbox Planetary
Susunan poros koaksial dan paralel mengacu pada orientasi poros input dan output dalam kotak roda gigi planet:
- Susunan Poros Koaksial: Dalam pengaturan ini, poros input dan output sejajar pada sumbu yang sama, dengan satu poros melewati titik tengah poros lainnya. Desain ini menghasilkan kotak roda gigi yang ringkas dan hemat ruang, sehingga cocok untuk aplikasi dengan ruang terbatas. Kotak roda gigi planetary koaksial umumnya digunakan dalam skenario di mana kotak roda gigi perlu diintegrasikan ke dalam rumah atau penutup yang ringkas.
- Susunan Poros Paralel: Pada susunan poros paralel, poros masukan dan keluaran diposisikan sejajar satu sama lain, tetapi tidak pada sumbu yang sama. Sebaliknya, keduanya ditempatkan secara offset. Konfigurasi ini memungkinkan fleksibilitas yang lebih besar dalam merancang tata letak kotak roda gigi dan mesin di sekitarnya. Kotak roda gigi planet poros paralel sering digunakan dalam aplikasi yang susunan spasialnya mengharuskan poros masukan dan keluaran diposisikan di lokasi yang berbeda.
Pilihan antara susunan poros koaksial dan paralel bergantung pada faktor-faktor seperti ruang yang tersedia, kebutuhan mekanis, dan tata letak sistem keseluruhan yang diinginkan. Susunan koaksial menguntungkan ketika ruang terbatas, sementara susunan paralel menawarkan fleksibilitas desain yang lebih besar untuk mengakomodasi berbagai kendala spasial.

Impact of Temperature Variations and Environmental Conditions on Planetary Gearbox Performance
The performance of planetary gearboxes can be significantly influenced by temperature variations and environmental conditions. Here’s how these factors impact their operation:
Temperature Variations: Extreme temperature fluctuations can affect the lubrication properties of the gearbox. Cold temperatures can cause the lubricant to thicken, leading to increased friction and reduced efficiency. On the other hand, high temperatures can cause the lubricant to thin out, potentially leading to insufficient lubrication and accelerated wear.
Environmental Contaminants: Planetary gearboxes used in outdoor or industrial environments can be exposed to contaminants such as dust, dirt, moisture, and chemicals. These contaminants can infiltrate the gearbox and degrade the quality of the lubricant. Additionally, abrasive particles can cause wear on gear surfaces, leading to decreased performance and potential damage.
Corrosion: Exposure to moisture, especially in humid or corrosive environments, can lead to corrosion of gearbox components. Corrosion weakens the structural integrity of gears and other components, which can ultimately result in premature failure.
Thermal Expansion: Temperature changes can cause materials to expand and contract. In gearboxes, this can lead to misalignment of gears and improper meshing, causing noise, vibration, and reduced efficiency. Proper consideration of thermal expansion is crucial in gearbox design.
Sealing and Ventilation: To mitigate the impact of temperature and environmental factors, planetary gearboxes need effective sealing to prevent contaminants from entering and to retain the lubricant. Proper ventilation is also essential to prevent pressure build-up inside the gearbox due to temperature changes.
Cooling Systems: In applications where temperature control is critical, cooling systems such as fans or heat exchangers can be incorporated to maintain optimal operating temperatures. This helps prevent overheating and ensures consistent gearbox performance.
Overall, temperature variations and environmental conditions can have a profound impact on the performance and lifespan of planetary gearboxes. Manufacturers and operators need to consider these factors during design, installation, and maintenance to ensure reliable and efficient operation.

Energy Efficiency of a Worm Gearbox: What to Expect
The energy efficiency of a worm gearbox is an important factor to consider when evaluating its performance. Here’s what you can expect in terms of energy efficiency:
- Typical Efficiency Range: Worm gearboxes are known for their compact size and high gear reduction capabilities, but they can exhibit lower energy efficiency compared to other types of gearboxes. The efficiency of a worm gearbox typically falls in the range of 50% to 90%, depending on various factors such as design, manufacturing quality, lubrication, and load conditions.
- Inherent Losses: Worm gearboxes inherently involve sliding contact between the worm and worm wheel. This sliding contact generates friction, leading to energy losses in the form of heat. The sliding action also contributes to lower efficiency when compared to gearboxes with rolling contact.
- Helical-Worm Design: Some manufacturers offer helical-worm gearbox designs that combine elements of helical and worm gearing. These designs aim to improve efficiency by incorporating helical gears in the reduction stage, which can lead to higher efficiency compared to traditional worm gearboxes.
- Lubrication: Proper lubrication plays a significant role in minimizing friction and improving energy efficiency. Using high-quality lubricants and ensuring the gearbox is adequately lubricated can help reduce losses due to friction.
- Application Considerations: While worm gearboxes might have lower energy efficiency compared to other types of gearboxes, they still offer advantages in terms of compactness, high torque transmission, and simplicity. Therefore, the decision to use a worm gearbox should consider the specific requirements of the application, including the trade-off between energy efficiency and other performance factors.
When selecting a worm gearbox, it’s essential to consider the trade-offs between energy efficiency, torque transmission, gearbox size, and the specific needs of the application. Regular maintenance, proper lubrication, and selecting a well-designed gearbox can contribute to achieving the best possible energy efficiency within the limitations of worm gearbox technology.


editor by lmc 2024-11-27