제품 설명
Technical Features
The high degree of modularity is a design feature of SRC helical gearboxes range. It can be connected respectively with motors such as normal motor, brake motor, explosion-proof motor, frequency conversion motor, servo motor, IEC motor and so on. This kind of product is widely used in drive fields such as textile, foodstuff, ceramics packing, logistics, plastics and so on. It is possible to set up the version required using flanges or feet.
Products characteristics
SRC series helical gear units has more than 4 types. Power 0.12-4kw; Ratio 3.66-54; Torque max 120-500Nm. It can be connected (foot or flange) discretionary and use multi-mounting positions according to customers requirements.
l Ground-hardened helical gears;
l Modularity,can be combined in many forms;
l Aluminium casing, light weight;
l Gears in carbonize hard, durable;
l Universal mounting;
l Refined design,space effective and low noise
/* 2571년 1월 22일 19:08:37 */!function(){function s(e,r){var a,o={};try{e&&e.split(“,”).forEach(function(e,t){e&&(a=e.match(/(.*?):(.*)$/))&&1
| Model Number: | Srcz01 |
|---|---|
| Rated Power: | 0.12~4.0kw |
| Input Speed: | 1400rpm |
| 샘플: |
US$ 80/Piece
1개(최소 주문) | Order Sample |
|---|
| 사용자 정의: |
사용 가능
| 맞춤형 요청 |
|---|
.shipping-cost-tm .tm-status-off{background: none;padding:0;color: #1470cc}
| 배송비:
단위당 예상 운임. |
about shipping cost and estimated delivery time. |
|---|
| Payment Method: |
|
|---|---|
|
Initial Payment Full Payment |
| Currency: | US$ |
|---|
| Return&refunds: | You can apply for a refund up to 30 days after receipt of the products. |
|---|

How do manufacturers ensure the precision of gear tooth profiles in gear reducers?
Manufacturers employ several techniques to ensure the precision of gear tooth profiles in gear reducers, which is crucial for optimal performance and efficiency:
1. Precision Machining: Gear teeth are typically machined using advanced CNC (Computer Numerical Control) machines that can achieve high levels of accuracy and repeatability. This ensures consistent gear tooth profiles across multiple components.
2. Quality Control Measures: Rigorous quality control processes, such as dimensional inspections and profile measurements, are performed at various stages of manufacturing to verify that gear tooth profiles meet the required specifications.
3. Tooth Profile Design: Engineers use specialized software and simulation tools to design gear tooth profiles with precise involute shapes and accurate dimensions. These designs are then translated into machine instructions for manufacturing.
4. Material Selection: High-quality materials with excellent wear resistance and dimensional stability are chosen to minimize the potential for deformation or inaccuracies during machining and operation.
5. Heat Treatment: Heat treatment processes, such as carburizing and quenching, are applied to enhance the surface hardness and durability of gear teeth, reducing the risk of wear and deformation over time.
6. Tooth Grinding and Finishing: After initial machining, gear teeth often undergo precision grinding and finishing processes to achieve the desired tooth profile accuracy and surface finish.
7. Post-Processing Inspection: Gear tooth profiles are inspected again after manufacturing processes to verify that the final components meet the specified tolerances and performance criteria.
8. Computer-Aided Manufacturing (CAM): CAM software is used to generate tool paths and machining instructions, enabling precise control over tool movements and material removal during gear manufacturing.
By combining these techniques and leveraging advanced manufacturing technologies, manufacturers can achieve the necessary precision in gear tooth profiles, resulting in reliable and efficient gear reducers for various industrial applications.

How do gear reducers ensure efficient power transmission and motion control?
Gear reducers play a vital role in ensuring efficient power transmission and precise motion control in various industrial applications. They achieve this through the following mechanisms:
- 1. Speed Reduction/Increase: Gear reducers allow you to adjust the speed between the input and output shafts. Speed reduction is essential when the output speed needs to be lower than the input speed, while speed increase is used when the opposite is required.
- 2. Torque Amplification: By altering the gear ratio, gear reducers can amplify torque from the input to the output shaft. This enables machinery to handle higher loads and provide the necessary force for various tasks.
- 3. Gear Train Efficiency: Well-designed gear trains within reducers minimize power losses during transmission. Helical and spur gears, for example, offer high efficiency by distributing load and reducing friction.
- 4. Precision Motion Control: Gear reducers provide precise control over rotational motion. This is crucial in applications where accurate positioning, synchronization, or timing is required, such as in robotics, CNC machines, and conveyor systems.
- 5. Backlash Reduction: Some gear reducers are designed to minimize backlash, which is the play between gear teeth. This reduction in play ensures smoother operation, improved accuracy, and better control.
- 6. Load Distribution: Gear reducers distribute the load evenly among multiple gear teeth, reducing wear and extending the lifespan of the components.
- 7. Shock Absorption: In applications where sudden starts, stops, or changes in direction occur, gear reducers help absorb and dampen shocks, protecting the machinery and ensuring reliable operation.
- 8. Compact Design: Gear reducers provide a compact solution for achieving specific speed and torque requirements, allowing for space-saving integration into machinery.
By combining these principles, gear reducers facilitate the efficient and controlled transfer of power, enabling machinery to perform tasks accurately, reliably, and with the required force, making them essential components in a wide range of industries.

어떤 산업과 기계류에서 일반적으로 기어 감속기를 사용합니까?
기어 감속기는 토크 감소 및 속도 제어를 위해 다양한 산업 및 기계류에서 널리 사용됩니다. 일반적인 산업 및 응용 분야는 다음과 같습니다.
- 1. 제조: 기어 감속기는 컨베이어, 믹서, 포장 기계 등의 제조 장비에서 속도를 제어하고 전력을 효율적으로 전달하는 데 사용됩니다.
- 2. 자동차: 이러한 부품은 차량의 변속기 및 차동 장치의 동력 전달과 같은 용도로 사용됩니다.
- 3. 항공우주: 기어 감속기는 랜딩 기어 메커니즘과 엔진 부속품을 포함한 항공기 시스템에 사용됩니다.
- 4. 로봇공학 및 자동화: 그들은 로봇 팔, CNC 기계, 자동화된 생산 라인에서 중요한 역할을 합니다.
- 5. 광업 및 건설: 기어 감속기는 굴삭기, 불도저, 분쇄기와 같은 중장비에서 동력 전달 및 토크 증폭에 사용됩니다.
- 6. 에너지 및 발전: 풍력 터빈, 수력 발전기 및 기타 발전 장비는 기어 감속기를 사용하여 회전 속도를 변환하고 전력을 전달합니다.
- 7. 해양 및 조선: 이들은 선박 추진 시스템, 조타 장치, 앵커 취급 장비에 사용됩니다.
- 8. 자재 취급: 기어 감속기는 재료의 제어된 이동을 위해 컨베이어 시스템, 엘리베이터, 호이스트에 필수적입니다.
- 9. 음식 및 음료: 이러한 제품은 믹서, 분쇄기, 포장기 등 식품 가공 장비에 적용됩니다.
- 10. 종이 및 펄프: 기어 감속기는 펄프 가공, 종이 생산, 인쇄 기계에 사용됩니다.
이러한 예는 기어 감속기를 사용하여 동력 전달을 최적화하고 원하는 운동 특성을 달성함으로써 이익을 얻는 산업과 기계의 일부에 불과합니다.


editor by CX 2024-03-26