제품 설명
제품 설명
NBR180 series adopts an integrated design of sun gear and input shaft, integrated design of output structure, and increased right-angle design for more flexible installation and space-saving. The product has the characteristics of high load, high precision, and low noise, focusing on the use of automation equipment, various types of packaging, printing, lithium-ion, LCD, robot, palletizers, woodworking, doors, windows, and other industry sectors.
Product Name: High Precision Planetary Gearbox
Product Series: NBR180 Series
Product features: high precision, high load, low noise, high flexibility, space saving.
Product Description:
Integrated design concept with high strength bearings ensure the product itself is durable and efficient
A variety of output ideas such as shaft output, flange and gear are available.
1 arc minute ≤ backlash ≤ 3 arc minutes
Reduction ratios ranging from 3 to 100
Frame design: increases torque and optimises power transmission
Optimised selection of oil seals: reduces friction and laminate transmission efficiency
Protection class IP65
Warranty: 2 years
우리의 장점
높은 정밀도
High load
저소음
High flexibility
Space saving
상세 사진
제품 매개변수
| Segment number | Single segment | ||||||||||
| 비율 | i | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 14 | 20 |
| 정격 출력 토크 | nm | 550 | 980 | 1140 | 1040 | 1040 | 950 | 850 | 850 | 1040 | 850 |
| Emergency stop torque | nm | Three times of Maximum Output Torque | |||||||||
| Rated input speed | Rpm | 3000 | |||||||||
| Max input speed | Rpm | 6000 | |||||||||
| Ultraprecise backlash | 아크민 | ≤2 | |||||||||
| Precision backlash | 아크민 | ≤4 | |||||||||
| Standard backlash | 아크민 | ≤6 | |||||||||
| Torsional rigidity | Nm/아크분 | 145 | |||||||||
| Max.bending moment | nm | 14500 | |||||||||
| Max.axial force | N | 7250 | |||||||||
| Service life | hr | 20000(10000 under continuous operation) | |||||||||
| 능률 | % | ≥95% | |||||||||
| 무게 | 킬로그램 | 51 | |||||||||
| 작동 온도 | 섭씨 | -10ºC~+90ºC | |||||||||
| 매끄럽게 하기 | Synthetic grease | ||||||||||
| Protection class | IP64 | ||||||||||
| Mounting Position | All directions | ||||||||||
| Noise level(N1=3000rpm,non-loaded) | dB(A) | ≤72 | |||||||||
| Rotary inertia | Kg·cm² | 68.9 | 65.6 | ||||||||
적용 산업
Packaging Machinery Mechanical Hand Textile Machinery
Non Standard automation Machine Tool Printing Equipment
| 애플리케이션: | 자동차, 기계, 선박, 농업 기계 |
|---|---|
| 경도: | 경화된 치아 표면 |
| 설치: | All Direction |
| 공들여 나열한 것: | Planetary Gearbox |
| Gear Shape: | Helical Gear |
| 단계: | 단일 단계 |
| 사용자 정의: |
사용 가능
| 맞춤형 요청 |
|---|

행성 기어박스의 동축 및 평행 축 배열 개념
In planetary gearboxes, the arrangement of shafts plays a crucial role in determining the gearbox’s overall structure and functionality. The two common shaft arrangements are coaxial and parallel configurations:
동축 샤프트 배열: In a coaxial arrangement, the input shaft and output shaft are positioned along the same axis, resulting in a compact and streamlined design. The planetary gears and other components are aligned concentrically around the central axis, allowing for efficient power transmission and reduced space requirements. Coaxial planetary gearboxes are commonly used in applications where space is limited, and a compact form factor is essential. They are often employed in robotics, automotive systems, and aerospace mechanisms.
평행 샤프트 배열: In a parallel arrangement, the input and output shafts are positioned parallel to each other but on different axes. The planetary gears are aligned in a way that allows the power to be transmitted from the input shaft to the output shaft via a combination of meshing gears. This arrangement allows for a larger gear diameter and higher torque transmission capabilities. Parallel planetary gearboxes are often used in applications requiring high torque and heavy-duty performance, such as industrial machinery, construction equipment, and material handling systems.
The choice between coaxial and parallel shaft arrangements depends on the specific requirements of the application. Coaxial configurations are favored for compactness and efficient power transmission, while parallel configurations excel in handling higher torque and heavy loads. Both arrangements offer distinct advantages and are chosen based on factors like available space, torque demands, load characteristics, and overall system design.

행성 기어박스의 백래시 감소 메커니즘의 장점
행성 기어박스의 백래시 감소 메커니즘은 성능과 정밀도를 향상시키는 데 도움이 되는 여러 가지 이점을 제공합니다.
향상된 위치 정확도: 백래시, 즉 기어 이빨 사이의 유격은 정밀한 움직임이 필수적인 어플리케이션에서 위치 오차를 유발할 수 있습니다. 저감 메커니즘은 이러한 유격을 최소화하거나 제거하여 더욱 정확한 위치 결정을 가능하게 합니다.
더 나은 역전 특성: 백래시는 운동 방향 반전에 지연을 초래할 수 있습니다. 감속 메커니즘을 사용하면 반전이 더 부드럽고 즉각적이어서 빠른 방향 전환이 필요한 분야에 적합합니다.
향상된 효율성: 백래시는 기어 이빨 사이의 충격으로 인해 에너지 손실과 효율 저하로 이어질 수 있습니다. 감속 메커니즘은 이러한 충격을 최소화하여 전반적인 동력 전달 효율을 향상시킵니다.
소음 및 진동 감소: 백래시는 기어박스의 소음과 진동을 증가시켜 장비와 주변 환경에 영향을 미칠 수 있습니다. 백래시를 줄이면 소음과 진동 수준이 크게 감소합니다.
더 나은 마모 보호: 백래시는 기어 톱니 마모를 가속화하여 기어박스 조기 고장을 초래할 수 있습니다. 감속 장치는 하중을 톱니 전체에 더 고르게 분산시켜 기어박스의 수명을 연장합니다.
향상된 시스템 안정성: 로봇공학이나 자동화와 같이 안정성이 중요한 응용 분야에서는 백래시 감소 메커니즘이 원활한 작동과 진동 감소에 도움이 됩니다.
정밀 응용 프로그램과의 호환성: 항공우주, 의료 장비, 광학 등의 산업은 높은 정밀도를 요구합니다. 백래시 감소 메커니즘을 갖춘 유성 기어박스는 정확하고 안정적인 동작을 보장하여 이러한 용도에 적합합니다.
향상된 제어 및 성능: CNC 기계 및 로봇과 같이 제어가 중요한 응용 분야에서는 감속 메커니즘을 통해 동작을 더 잘 제어하고 더 미세한 조정이 가능합니다.
오류 누적 최소화: 여러 기어단이 있는 시스템에서는 백래시가 누적되어 더 큰 위치 오차가 발생할 수 있습니다. 저감 메커니즘은 이러한 오차 누적을 최소화하여 시스템 전체의 정확도를 유지하는 데 도움이 됩니다.
전반적으로 행성 기어박스에 백래시 감소 메커니즘을 통합하면 정확도, 효율성, 신뢰성 및 성능이 향상되어 정밀 산업에서 필수적인 구성 요소가 됩니다.

Challenges and Solutions for Managing Power Transmission Efficiency in Planetary Gearboxes
Managing power transmission efficiency in planetary gearboxes is crucial to ensure optimal performance and minimize energy losses. Several challenges and solutions are involved in maintaining high efficiency:
1. Gear Meshing Efficiency: The interaction between gears can lead to energy losses due to friction and meshing misalignment. To address this, manufacturers use precision manufacturing techniques to ensure accurate gear meshing and reduce friction. High-quality materials and surface treatments are also employed to minimize wear and friction.
2. Lubrication: Proper lubrication is essential to reduce friction and wear between gear surfaces. Using high-quality lubricants with the appropriate viscosity and additives can enhance power transmission efficiency. Regular maintenance and monitoring of lubrication levels are vital to prevent efficiency losses.
3. Bearing Efficiency: Bearings support the rotating elements of the gearbox and can contribute to energy losses if not properly designed or maintained. Choosing high-quality bearings and ensuring proper alignment and lubrication can mitigate efficiency losses in this area.
4. Bearing Preload: Incorrect bearing preload can lead to increased friction and efficiency losses. Precision assembly and proper adjustment of bearing preload are necessary to optimize power transmission efficiency.
5. Mechanical Losses: Various mechanical losses, such as windage and churning losses, can occur in planetary gearboxes. Designing gearboxes with streamlined shapes and efficient ventilation systems can reduce these losses and enhance overall efficiency.
6. Material Selection: Choosing appropriate materials with high strength and minimal wear characteristics is essential for reducing power losses due to material deformation and wear. Advanced materials and surface coatings can be employed to enhance efficiency.
7. Noise and Vibration: Excessive noise and vibration can indicate energy losses in the form of mechanical inefficiencies. Proper design and precise manufacturing techniques can help minimize noise and vibration, indicating better power transmission efficiency.
8. Efficiency Monitoring: Regular efficiency monitoring through testing and analysis allows engineers to identify potential issues and optimize gearbox performance. This proactive approach ensures that any efficiency losses are promptly addressed.
By addressing these challenges through careful design, material selection, manufacturing techniques, lubrication, and maintenance, engineers can manage power transmission efficiency in planetary gearboxes and achieve high-performance power transmission systems.


editor by CX 2023-09-14